

Crashkurs deskriptive Statistik – Teil 2

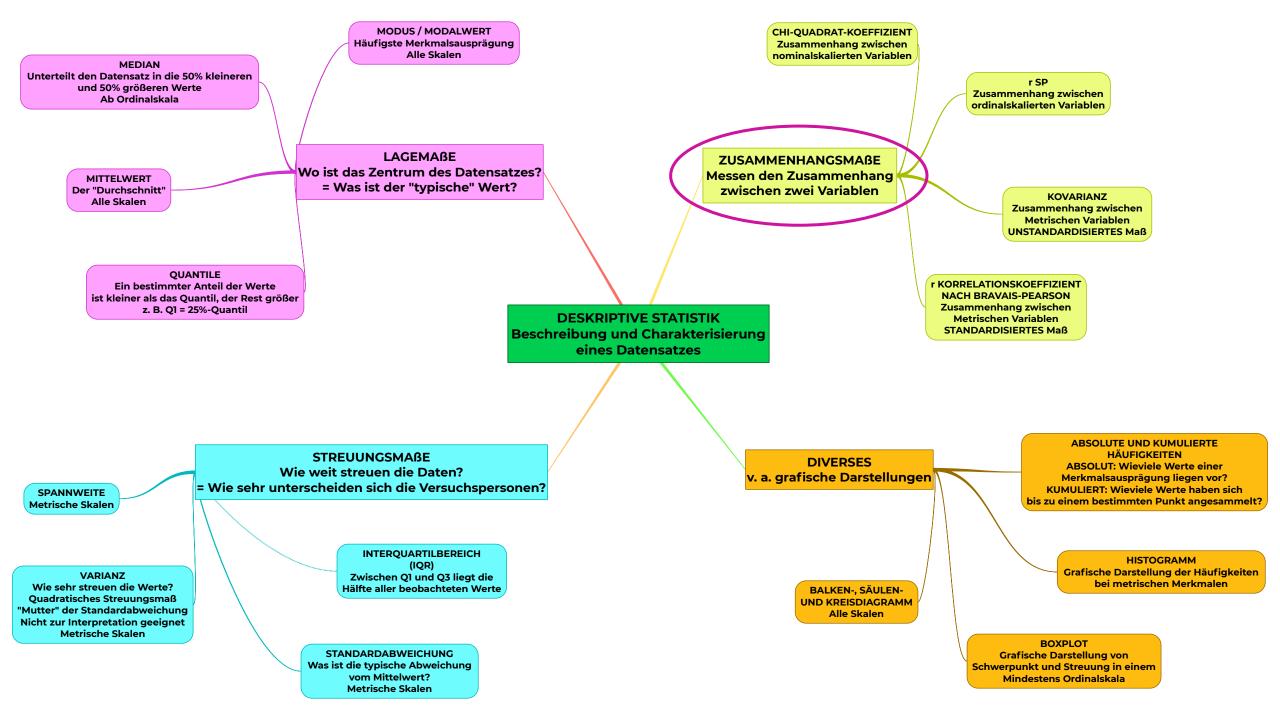
Lern' die wichtigsten Grundlagen in kürzester Zeit!

Ablauf Nachmittag

Zusammenhangsmaße:

• 14:00 – 14:50 Chi-Quadrat-Koeffizient, Rangkorrelation Spearman

• 14:50 – 15:00 Pause


• 15:00 – 15:50 Kovarianz & Korrelationskoeffizient r (Bravais-Pearson)

• 15:50 – 16:10 Pause

• 16:10 – 17:00 SPSS

Zusammenhangsmaße

Albersicht

Zusammenhangsmaße Wersicht

Chi-Quadrat-Koeffizient:

Zusammenhang zwischen zwei nominalskalierten Variablen

Rangkorrelations-Koeffizient:

Zusammenhang zwischen zwei ordinalskalierten Variablen

Zusammenhangsmaße Wersicht

Kovarianz:

 Zusammenhang zwischen zwei metrischen Variablen – nicht normiert

Korrelationskoeffizient r:

>Zusammenhang zwischen zwei metrischen Variablen – normiert!

Korrelation Was? Wefür?

Korrelation

Zusammenhang zwischer zwei Merkmalen

Synonyme:

Kovariation, Abhängigkeit, Assoziation

Korrelation

- Um zu messen, ob zwischen zwei Variablen ein Zusammenhang vorliegt & wie stark dieser ist
- Verwendung in deskriptiver & schließender Statistik

Zusammenhangsmaße

Wann nehme ich welches?

- Viele verschiedene
 Zusammenhangsmaße
- Nimm' das, was zum Skalenniveau deiner erhobenen Variablen passt.

Zusammenhangsmaße und Gkalenniveaus

Nominalskala	Chi-Quadrat-Koeffizient Phi-Koeffizient Cramérs V
Ordinalskala	Rangkorrelationskoeffizient nach Spearman Kendalls Tau
Metrische Skalen	Kovarianz Korrelationskoeffizient <i>r</i> nach Bravais-Pearson

Korrelation & Kausalität

Wie hängen sie zusammen?

Korrelation & Kausalität Beispiel

Negativer Zusammenhang zwischen Perfektionismus und Selbstwertgefühl

Folgendes könnte zutreffen:

- Der Perfektionismus beeinflusst das Selbstwertgefühl
- Das Selbstwertgefühl beeinflusst den Perfektionismus
- Beide werden von einer dritten Variable beeinflusst (Scheinkorrelation!)
- Beide beeinflussen sich gegenseitig kausal

Korrelation & Kausalität

- Korrelationskoeffizienten zeigen nicht an, welche der Möglichkeiten die Richtige ist!
 - >Korrelationen dürfen ohne Zusatzinformation NICHT kausal interpretiert werden!

- Methode zur Überprüfung von Kausalität:
 - > Experiment

Variable A und Variable B kovariieren

Variable A tritt zeitlich vor B auf

 Alternative Erklärungen können ausgeschlossen werden

Zusammenhänge Die Maße im Einzelnen

Mas? Wofür?

 χ^2 Was?

Zusammenhangsmaß für zwei nominalskalierte Merkmale

 Kann auch bei höher skalierten Merkmalen verwendet werden – diese müssen dann in Kategorien verpackt werden χ^2 Wefür?

- Um festzustellen, ob zwischen zwei nominalskalierten Merkmalen ein Zusammenhang besteht
 - Schwierig zu interpretieren, da nicht normiert

Zusammenhang zwischen dem Geschlecht & der Wahl einer Dating-App

Stichprobe:

· 20 Frauen & 20 Männer

Dating-Apps/Singlebörsen:

Parship & Tinder

Beispiel

Kreuz- oder Kontingenztabelle

	Weiblich	Männlich	Zeilensummen:
Parship	14	3	17
Tinder	6	17	23
Spaltensummen:	20	20	N = 40

Berechnung

Grundprinzip

Vergleich der

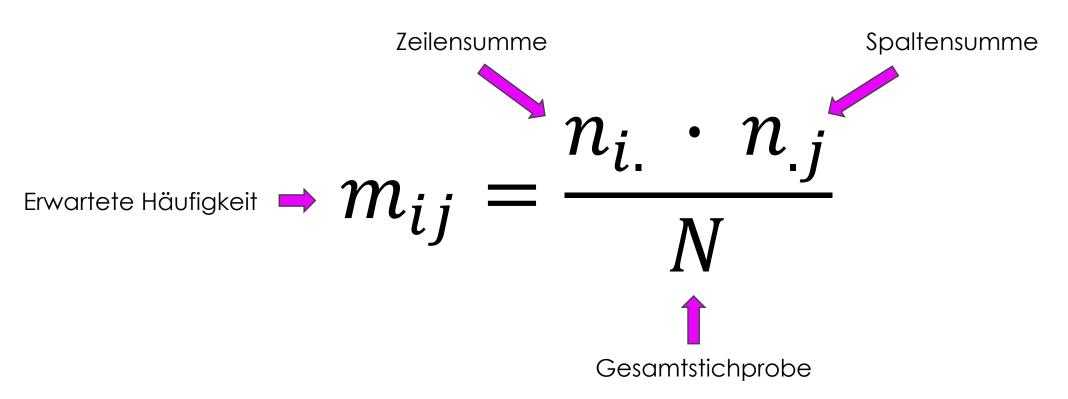
- tatsächlich beobachteten Häufigkeiten mit den
- bei Unabhängigkeit erwarteten Häufigkeiten
 - >Unabhängigkeit = kein Zusammenhang

Formel

$$x^{2} = \sum_{\substack{\text{alle Zellen}}} \frac{(beobachtete \ H\ddot{a}ufigkeit - erwartete \ H\ddot{a}ufigkeit)^{2}}{erwartete \ H\ddot{a}ufigkeit}$$

Wenn es (signifikante) Abweichungen zwischen den tatsächlich beobachteten & den theoretisch erwarteten Häufigkeiten gibt, liegt ein Zusammenhang vor

- 1. Berechne die Randsummen
- 2. Berechne die erwarteten Häufigkeiten
 - 3. Setze alles in die Formel ein
 - 4. Berechne den Maximalwert, um ein Gefühl für die Stärke des Zusammenhangs zu bekommen



Randsummen

	Weiblich	Männlich	Zeilensummen:
Parship	14	3	17
Tinder	6	17	23
Spaltensummen:	20	20	N = 40

Erwartete Häufigkeiten Formel

Erwartete Häufigkeiten

Formel

$$m_{ij} = \frac{n_{i.} \cdot n_{.j}}{N}$$

Übersetzt:

- Multipliziere für jede Zelle die dazugehörigen Randhäufigkeiten miteinander
- Teile anschließend durch die Gesamtstichprobe
 - >Weichen die erwarteten von den beobachteten Häufigkeiten ab, liegt ein Zusammenhang vor!

Erwartete Häufigkeiten Berechnung

$$m_{ij} = \frac{n_{i.} \cdot n_{.j}}{N} = \frac{20 \cdot 17}{40} = 8.5$$

	Weiblich	Männlich	Zeilensummen:
Parship	14	3	17
Tinder	6	17	23
Spaltensummen:	20	20	N = 40

Erwartete Häufigkeit sind 8.5, es wurden jedoch 14 beobachtet

Berechnung

$$x^{2} = \frac{(14 - 8.5)^{2}}{8.5} + \frac{(6 - 11.5)^{2}}{11.5} + \frac{(3 - 8.5)^{2}}{8.5} + \frac{(17 - 11.5)^{2}}{11.5} = 12.377$$

Was sagt uns das?

- Nicht wirklich viel...
 - Maximalwert berechnen, um einen Anhaltspunkt für die Größe zu bekommen

Chi-Quadrat-Koeffizient Maximalbereich

$$0 \le x^2 \le x_{max}^2 = N \cdot (M-1)$$

M = der kleinere Wert der Anzahl der Zeilen und Spalten bzw. der Ausprägungen der Variablen

Chi-Quadrat-Koeffizient Maximalbereich

$$N \cdot (M-1)$$

$$= 40 \cdot (2 - 1) = 40$$

Maximalwert ist hier 40

- Unser Ergebnis war 12.377
 - > Also ein eher schwacher Zusammenhang

Interpretation:

Wie sag'ich's Tante Erna?

Interpretation Chi-Quadrat

"Es gibt einen schwachen Zusammenhang zwischen dem Geschlecht und der Nutzung einer Dating-App."

"Frauen neigen eher zu Parship, Männer eher zu Tinder."

Letzteres lässt sich aus der Tabelle herauslesen!

Rangkorrelations-Koeffizient R_{SP}

Mas? Wofür?

R_{SP}

Normiertes Zusammenhangsmaß für zwei mindestens ordinalskalierte Merkmale

≻Kann nur Werte zwischen−1 und +1 annehmen

R_{SP}
Stärke des
Zusammenhangs

0.1 schwach0.3 mittel0.5 stark

>Betrag: gilt für positive oder negative Werte

R_{SP} Wefür?

- Um lineare Zusammenhänge zwischen Rangplätzen zu quantifizieren
- Auch für metrische Merkmale einsetzbar
 - >Robuster bei Ausreißern

Beispiel

Beurteilung der Arbeitsmotivation durch zwei Teamleiter

Skala: 1 (kaum) – 9 (sehr stark)

Stichprobe:

4 Mitarbeiterinnen in einer Kurklinik

a		. 0
0	eisp	riel

Versuchs-	Beurteilung	Beurteilung	
person Nr.	Herr Huber	Herr Müller	
1: Berta	3	4	
2: Susi	9	7	
3: Chantal	6	6	
4: Alexa	7	5	

Berechnung

Rangkorrelations-Koeffizient Ränge zwordnen

Versuchs- person Nr.	Beurteilung Herr Huber	Rangplätze	Beurteilung Herr Müller	Rangplätze	
1: Berta	3	4	4	4	
2: Susi	9	1	7	1	
3: Chantal	6	3	6	2	
4: Alexa	7	2	5	3	

Formel

Formel

$$r_{SP} = \frac{\sum_{i=1}^{n} (rg(x_i) - \overline{rg}_x)(rg(y_i) - \overline{rg}_y)}{\sqrt{\sum_{i=1}^{n} (rg(x_i) - \overline{rg}_x)^2} \cdot \sqrt{\sum_{i=1}^{n} (rg(y_i) - \overline{rg}_y)^2}}$$

Oder lieber ein wenig einfacher mit SPSS...

Rangkorrelations-Koeffizient Beispiel

Korrelationen

			Beurt. Arbeitsmotiv ation A	Beurt. Arbeitsmotiv ation B
Spearman-Rho Beurt. Arbeitsmotivation A Beurt. Arbeitsmotivation Beurt. Arbeitsmotivation B	Korrelationskoeffizient	1,000	,800	
	A	Sig. (2-seitig)		,200
	N	4	4	
	Korrelationskoeffizient	,800	1,000	
	Sig. (2-seitig)	,200		
		N	4	4

Interpretation:

Wie sag'ich's Tante Erna?

Interpretation Rangkorrelation

"Es gibt einen starken Zusammenhang zwischen den Beurteilungen der beiden Teamleiter."

Oder:

"Es gibt eine starke Übereinstimmung zwischen den Beurteilungen der beiden Teamleiter."

Kovarianz

Mas? Wofür?

Kovarianz Mas?

Nicht normiertes Zusammenhangsmaß für metrische Variablen

>,,Mutter" des Korrelationskoeffizienten *r*

Kovarianz

 Um Zusammenhänge zwischen metrischen Variablen zu quantifizieren

Kovarianz Machteil

- Maßstabsabhängig
 - >daher kaum zur Interpretation geeignet!

Kann je nach Skala sehr groß oder klein sein

- Lösung:
 - >Korrelationskoeffizient r nach Bravais-Pearson

Kovarianz Beispiel Maßstab

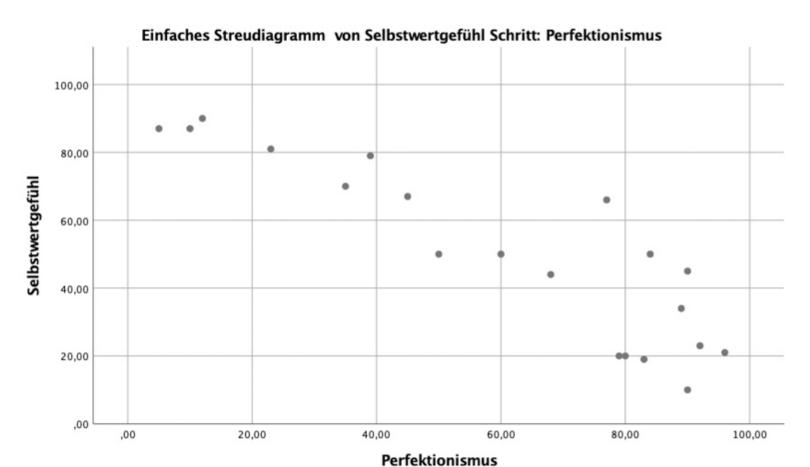
Zusammenhang zwischen Kopfumfang und Intelligenz

Versuchs-	Kopfumfang	Intelligenz
person Nr.	in cm	
1	55	102
2	60	117
3	57	120

Kovarianz Beispiel Maßstab

Versuchs-	Kopfumfang	Intelligenz
person Nr.	in cm	
1	55	102
2	60	117
3	57	120

Kovarianz = 17 (in cm gemessen)


Kovarianz Beispiel Maßstab

Versuchs-	Kopfumfang	Intelligenz
person Nr.	in m	
1	0,55	102
2	0,60	117
3	0,57	120

Kovarianz = 0,17 (in m gemessen)

Kovarianz Richtung des Zusammenhangs

Kovarianz grafisch

Kovarianz

Richtung

Positive Kovarianz:

- Gleichgerichtete Tendenz
 - Hohe Werte in dem einen Merkmal gehen mit hohen Werten in dem anderen einher (bzw. niedrige mit niedrigen)

Negative Kovarianz:

- Entgegengesetzte Tendenz
 - > Hohe Werte in dem einen Merkmal gehen mit niedrigen Werten in dem anderen einher

Kovarianz Berechnung

Kovarianz

Formel

$$s_{xy} := \frac{1}{n} \cdot \left[(x_1 - \overline{x})(y_1 - \overline{y}) + \ldots + (x_n - \overline{x})(y_n - \overline{y}) \right] = \frac{1}{n} \cdot \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})$$

1. Berechne den Mittelwert beider Variablen

- 2. Ziehe von jedem x- und y-Wert einer Person den dazugehörigen MW ab und multipliziere das Ganze miteinander
 - 3. Zähle alles zusammen
 - 4. Teile das Ergebnis durch n

Kovarianz Mut GPGG

Kovarianz Mit GPGG

Korrelationen

		Perfektionis mus	Selbstwertgef ühl
Perfektionismus	Korrelation nach Pearson	1	-,891**
	Signifikanz (2-seitig)		,000
	Quadratsummen und Kreuzprodukte	17766,550	-13701,550
	Kovarianz	935,082	-721,134
	N	20	20
Selbstwertgefühl	Korrelation nach Pearson	-,891**	1
	Signifikanz (2-seitig)	,000	
	Quadratsummen und Kreuzprodukte	-13701,550	13324,550
	Kovarianz	-721,134	701,292
	N	20	20

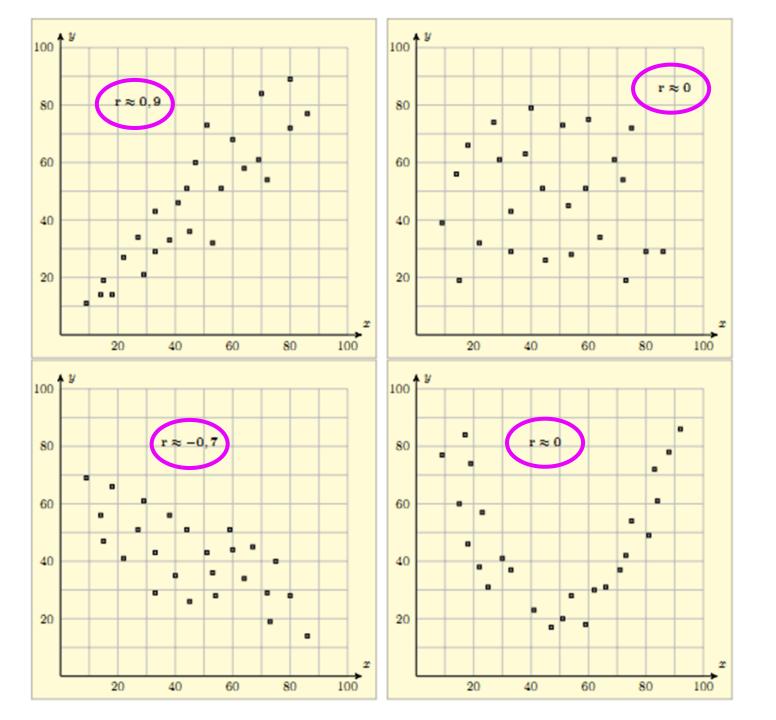
^{**.} Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.

Korrelationskoeffizient r

r Was?

Maßstabsunabhängiges, normiertes Zusammenhangsmaß für metrische Variablen

≻Kann nur Werte zwischen−1 und +1 annehmen


- Misst, wie stark zwei Merkmale miteinander kovariieren
 - Kann nur bei linearen Zusammenhängen angewendet werden!

Hinter die Löffelchen schreiben:

Wenn r = 0 ist, kann dennoch ein nicht-linearer Zusammenhang vorliegen! r

Stärke des Zusammenhangs 0.1 schwach 0.3 mittel 0.5 stark

>Betrag: gilt für positive oder negative Werte

Korrelationskoeffizient r Richtung

Positiver Zusammenhang: r größer 0

Negativer Zusammenhang: r kleiner 0

Unkorreliertheit (linear!): r gleich 0

Korrelationskoeffizient r

Berechnung

Korrelationskoeffizient r

Berechnung

$$r := \frac{s_{xy}}{s_x \cdot s_y}$$

- Kovarianz wird durch das Produkt der Standardabweichungen der beiden beteiligten Variablen geteilt
 - >Immer gleiches Vorzeichen wie Kovarianz!

Korrelationskoeffizient r Mit GPGG

Korrelationskoeffizient r

Mit GOPGG

Korrelationen

		Perfektionis mus	Selbstwertgef ühl
Perfektionismus	Korrelation nach Pearson	1	-,891**
	Signifikanz (2-seitig)		,000
	N	20	20
Selbstwertgefühl	Korrelation nach Pearson	-,891**	1
	Signifikanz (2-seitig)	,000	
	N	20	20

^{**.} Die Korrelation ist auf dem Niveau von 0,01 (2-seitig) signifikant.

Interpretation:

Wie sag'ich's Tante Erna?

Interpretation Korrelationskoeffizient

"Es gibt einen starken negativen Zusammenhang zwischen Perfektionismus und dem Selbstwertgefühl: je niedriger das Selbstwertgefühl eines Menschen, desto mehr neigt er zum Perfektionismus."

"Und natürlich umgekehrt: je höher das Selbstwertgefühl eines Menschen, desto weniger neigt er zum Perfektionismus."

SPSS Praktische Anwendung

SPSS Wo findet man Datensätze?

- Windows: C:/Programme/IBM/SPSS/Statistics/26 (oder eine andere Version)/Samples/German
- Mac: Im Finder: Applications oder Programme/IBM/SPSS/Statistics/26 (oder eine andere Version)/Samples/German
- Datensätze von Andy Field: <u>https://edge.sagepub.com/field5e/student-</u> resources/datasets

Geschafft! Zeit für fette Belohnung...

Dankeschön fürs Mitmachen! Und jetzt heißt's üben!

Verwendete Literatur

- Bortz, J., & Schuster, C. (2017). Statistik für Human- un Sozialwissenschaftler. Berlin: Springer.
- Bühner, M., & Ziegler, M., (2008): Statistik für Psychologen und Sozialwissenschaftler. München [u.a.]: Pearson.
- Eid, M., Gollwitzer, M., & Schmitt, M. (2010): Statistik und Forschungsmethoden. Lehrbuch; mit Online-Materialien. 1. Aufl. Weinheim [u.a.]: Beltz.
- Field, A. (2018). Discovering Statistics using IBM SPSS Statistics. London: SAGE.
- Sedlmeier, P., & Renkewitz, F. (2018). Forschungsmethoden und Statistik für Psychologen und Sozialwissenschaftler. München: Pearson.

Nachweis Bilder

- Alle Bilder © 123RF.com
- Ausnahme: Rosa Chamäleon-Kopf von Unsplash